The initial step in prescribing silvicultural treatments for hardwood stands is to decide whether a stand has the quality, vigor, and stocking to be managed or whether it should be regenerated. A professional forester experienced in hardwood management can make this decision.

EVEN-AGED vs UNEVEN-AGED: A landowner must decide whether he/she wants an even-aged or uneven-aged management program. Even-aged systems consist primarily of one age class of trees throughout the stand. Most valuable hardwoods demand even-aged management. Even-aged systems allows for the more modern use of clearcut and plant operations for pine, yellow poplar, and ash.

Uneven-aged on the other hand would mean that there is usually at least three different age classes of trees intermingled throughout the stand. Uneven-aged systems would make use of many different types of manipulation depending on the individual stand, but more or less managing what growing stock and genetic makeup that is already present in the stand. This system promotes less desirable, shade-tolerant species, such as maple. However, this system is also used with slow-growing species, such as oak, to establish advanced regeneration prior to overstory removal.

ARTIFICIAL REGENERATION: Artificial regeneration is usually associated with an even-aged management system. First priority should be to decide the site’s suitability to grow the particular species a landowner desires to grow. Time and effort spent seeking professional technical advise for the purpose of planning and matching a particular site to a species desired to grow is invaluable in preventing costly errors that are practically irreversible.

Site preparation is crucial in artificially regenerating hardwoods. There is less room for errors and a smaller window of opportunity to correct mistakes made in planting or seeding hardwoods. All salable material must be removed from the residual stand during the summer and early fall prior to planting. All non-merchantable trees must also be removed and stumps sheared at or slightly below ground level to prevent sprouting. The site then should be root raked, debris piled and burned, or disked with a heavy-duty bush and bog harrow. If the site to be planted is an old field or pasture, it is advisable to break up any hard pan by sub-soiling and even scalping some pastureland. Needless to say, this is an expensive operation.

Planting is then done either by planting root stock from a nursery or by direct seeding. If planting seedlings, this may be done as soon as they reach dormancy and can be lifted from the nursery. Seedlings should be graded and only those 24 inches and longer with a minimum root collar diameter of three-eighths of an inch should be utilized. When direct seeding a site, it is imperative to have adequate moisture on the site through seed germination and a clean mineral soil seedbed. Seed can be obtained from some natural sources or a nursery that collects them. Direct seeding is particularly useful to increase one particular component of a stand if that species is lacking. Pre-planning must include
deciding whether rodent and wildlife damage or livestock grazing will inhibit the ability to successfully regenerate the stand by direct seeding. Success rates of direct seedling are highly variable.

Either method of regeneration may be useful in establishing a hardwood stand, but one must note that probably the biggest downfall of young hardwood stands will be competition from grasses or destruction by wildlife. Careful planning before stand establishment can greatly decrease losses associated with either.

NATURAL REGENERATION: Natural regeneration in the South is relatively easy and inexpensive when compared to those artificial means described above. Difficulty and cost become important factors, however, in terms of controlling the species and timing of regeneration.

Natural hardwood regeneration may result from three principal sources: (1) seed, (2) advanced regeneration, (3) stump and root sprouts (coppice method). There are numerous strategies and combinations to naturally regenerate a hardwood stand. For example, oak species are slow growers, and usually require advanced regeneration before removing the overstory. If this regeneration is not present, then a future stand of oak would be questionable. A few of the most common are mentioned below. By managing a site through one or more of the following methods, a landowner should be able to enhance hardwood production.

CLEAR-CUT ALLOWING FOR COPPICE REGENERATION: To allow stump sprouts and root suckers to regenerate the entire tract after harvest is very successful in bottomland hardwoods. This is usually done by leaving a small portion of the stump (4-6 inches) above ground to allow for sprouting. Remember, however, your next stand will only be as good as its predecessor because you have not altered the genetic make-up of the stand.

MANAGEMENT FOR PINE-HARDWOOD: Many landowners want to establish a mixed pine and hardwood stand. The following steps can be used to promote a mixed stand. Proper application gives loblolly pines, red and white oaks, yellow poplar, and ash improved opportunity to compete with less desirable species for sunlight, moisture, and nutrients. This method tends to work best on medium quality, southwest facing sites.

This practice is applied to clearcut stands of previously existing low quality hardwood stands or pine-hardwood mixtures. All residual stems taller than six (6) feet should be felled in the spring after leaf out at ground level. Felling techniques may be by chainsaw or dozer equipped with a “V” or “KG” blade. The next step, which is extremely critical, is to apply a broadcast burn in July, 24 to 72 hours after a soaking rain. Loblolly pine seedlings are then planted on a wide spacing, the minimum of which is 10x10. If the erosion potential of the site is high, an alternative method is to chainsaw fell during the winter. This would tend to maintain better biodiversity and cause the following summer burn to occur in patches. Thus, only the burned patches would be planted.
STRIP-SELECTION METHOD: This is usually done by taking out long narrow strips in the stand and allowing for either stump/root sprouts to regenerate the stand, or adjacent seed trees, or a combination of both.

GROUP-SELECTION OR PATCH CLEAR-CUT: This method is almost identical to the STRIP-SELECTION METHOD except that you take out small, scattered stands within the entire tract. It is recommended to remove 3-5 acres in each patch to allow for oak regeneration, with the size variation depending on potential wildlife degradation of the regeneration. This method and the previously mentioned one creates an even-aged stand yet allows for one to manage for an uneven-aged tract. That is, you have numerous even-aged stands throughout the entire tract.

Naturally regenerated stands must also be protected from domestic grazing and over-sized deer herds just as artificially regenerated stands.

Photo credit: Alabama Forestry Commission

This information is provided by the Alabama Forestry Commission
For more information please visit: www.forestry.alabama.gov